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Abstract
We generalize the adiabatic renormalization to theories with dispersion
relations modified at energies higher than a new scale MC . We obtain explicit
expressions for the mean value of the stress tensor in the adiabatic vacuum,
up to the second adiabatic order. We show that for any dispersion relation
the divergences can be absorbed into the bare gravitational constants of the
theory. We also point out that, depending on the renormalization prescription,
the renormalized stress tensor may contain finite trans-Planckian corrections
even in the limit MC → ∞.

PACS numbers: 04.62.+v, 11.10.Gh, 98.80.Cq

1. Introduction

Inflationary scenarios provide an explanation for the large-scale structure of the universe and
for the anisotropy in the cosmic microwave background (CMB). The exponential (or quasi
exponential) expansion stretches the physical wavelengths, so that a density fluctuation which
is today of cosmological scale was originated during inflation on scales much smaller than the
Hubble radius. If the inflationary period lasts enough to solve the causality and other problems,
the scales of interest today are not only within the horizon but are also sub-Planckian at the
beginning of inflation [1]. This fact, known as the trans-Planckian problem, provides a
potential window to observe consequences of the Planck scale physics. Hence, the possibility
of observing signatures of Planckian physics in the power spectrum of the CMB and in the
evolution of the universe has been widely studied. In the absence of a full quantum theory
of gravity, the analysis must be phenomenological. One possibility is to consider an effective
field theory approach in which the new physics is encoded in the state of the quantum fields
when they leave sub-Planckian scales [2]. Other possibility, which will be analysed here, is
to consider modified dispersion relations for the modes of quantum fields, which might arise
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in loop quantum gravity or due to the interaction with gravitons [3]. It is important to test the
robustness of inflationary predictions under such modifications.

In simple models with a scalar field φ, the information on the power spectrum of the
CMB is contained in the two-point function 〈φ(x)φ(x ′)〉, and the backreaction of the field
on the spacetime metric is contained in the expectation value 〈Tµν〉. A consistent treatment
of the backreaction problem should rely in a careful evaluation of the expectation value of
the energy density and pressure, acting as the source in the semiclassical Einstein equations
(SEE). In general, 〈Tµν〉 is a divergent quantity. In previous works [4, 5], the renormalization
prescription consisted basically in subtracting the ground-state energy of each Fourier mode,
but this may lead to inconsistencies for quantum fields in curved spaces [6].

The renormalization procedure for quantum fields satisfying the standard dispersion
relations in curved backgrounds is well established [6]. The adiabatic renormalization [7]
consists in the subtraction of the stress tensor constructed with the WKB expansion of the
field modes, up to the fourth adiabatic order. The divergences are proportional to geometric
conserved tensors and can be absorbed into the bare constants of the theory. Thus one
defines the renormalized stress tensor as 〈T µν〉 − 〈T µν〉(Ad). Here we show that in the case of
generalized dispersion relations ω2 ∼ k2r , r � 2, fourth or higher adiabatic order contributions
are already finite in 3+1 dimensions. This suggests that no terms quadratic in the curvature
would be necessary in the SEE, and only a redefinition of the cosmological constant and the
Newton constant would be required to absorb the divergent contributions. However, as we
will see, this naive argument is incorrect: this prescription would lead to a discontinuity in
the order of the adiabatic subtraction, and may leave a mark of trans-Planckian physics as a
nonvanishing contribution to the stress tensor even in the limit MC → ∞. We will discuss
this subtlety using as example the calculation of the trace anomaly in 1+1 dimensions.

2. The WKB expansion

We consider a scalar field φ with a non-standard dispersion relation induced by higher spatial
derivatives

ω2
k = k2 + C(η)

[
m2 + 2

∑
s,p

(−1)s+pbsp

(
k

C1/2(η)

)2(s+p)
]

, (1)

where bsp are arbitrary coefficients of order M
2(1−s−p)

C and p � s. We work with a general
spatially flat FRW metric given by ds2 = C(η)[−dη2 + δij dxi dxj ] where C1/2(η) is the scale
factor given as a function of the conformal time η.

The Fourier modes χk corresponding to the scaled field χ = C(n−2)/4φ satisfy

χ ′′
k +

[
(ξ − ξn)RC + ω2

k

]
χk = 0. (2)

Here primes stand for derivatives with respect to the conformal time η, R is the Ricci scalar
and ξ defines the coupling with the curvature. The field modes χk can be expressed in the
well-known form

χk = 1√
2Wk

exp

(
−i

∫ η

Wk(η̃) dη̃

)
. (3)

Substitution of equation (3) into equation (2) yields a nonlinear differential equation for Wk

that can be solved iteratively by assuming that Wk is a slowly varying function of η. In this
WKB approximation, the adiabatic order of a given term is defined as the number of derivatives
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of the metric. Working up to the second adiabatic order, we straightforwardly obtain [8]

W 2
k = ω2

k + (ξ − ξn)(n − 1)

(
C ′′

C
+

(n − 6)

4

C ′2

C2

)
− 1

4

C ′′

C

(
1 − k2

ω2
k

dω2
k

dk2

)

− 1

4

C ′2

C2

k4

ω2
k

d2ω2
k

d(k2)
2 +

5

16

C ′2

C2

(
1 − k2

ω2
k

dω2
k

dk2

)2

. (4)

From equation (4) it is clear that while the zeroth adiabatic order scales as ω2
k , the second order

scales as ω0
k . It can be shown that the 2j -adiabatic order scales as ω

2−2j

k .

3. Renormalization of the stress tensor

We start from the vacuum expectation values of the energy density ρ and pressure p, generalized
to arbitrary dimension n and coupling ξ [8]:

〈ρ〉 = 1√
C

∫
dn−1kµn̄−n

(2π
√

C)(n−1)

{
C(n−2)/2

2

∣∣∣∣( χk

C(n−2)/4

)′∣∣∣∣
2

+ ξGηη|χk|2

+
ω2

k

2
|χk|2 + ξ

(n − 1)

2

[
C ′

C
(χ ′

kχ
∗
k + χkχ

′∗
k ) − C ′2

C2

(n − 2)

2
|χk|2

]}
, (5)

〈p〉 = 1√
C

∫
dn−1kµn̄−n

(2π
√

C)(n−1)

{(
1

2
− 2ξ

)
C(n−2)/2

∣∣∣∣( χk

C(n−2)/4

)′∣∣∣∣
2

+ ξG11|χk|2 +

[(
k2

n − 1

)
dω2

k

dk2
− ω2

k

2

]
|χk|2 − ξ(χ ′′

k χ∗
k + χkχ

′′∗
k )

+ ξ
C ′

2C
(χ ′

kχ
∗
k + χkχ

′∗
k ) + ξ

(n − 2)

2

(
C ′′

C
− (8 − n)

4

C ′2

C2

)
|χk|2

}
. (6)

Here n̄ is the number of dimensions of the physical spacetime, µ is an arbitrary parameter with
mass dimension and Gηη and G11(=G22 = · · · = Gn−1 n−1) are the nontrivial components of
the Einstein tensor.

The vacuum expectation values 〈ρ〉 and 〈p〉 are found from equations (3), (5) and (6).
Knowing the dependence with k of the 2j -adiabatic order one can show that, for ω2

k ∼ k2r with
r � 4, all contributions of second or higher adiabatic order are finite. The divergences come
only from the zeroth-order terms contained in 〈ρ〉 and 〈p〉. Instead, in the cases ω2

k ∼ k6 and
ω2

k ∼ k4, though no fourth-order divergences appear, second-order terms include divergent
contributions in 3+1 dimensions.

The zeroth and second adiabatic orders of the stress tensor can be computed from
equations (3) to (6). After a long calculation we obtain [8]

〈Tµν〉(0) = −gµν

4


n−1µ
n̄−n

(2π)n−1

∫ ∞

0
dx x(n−3)/2ω̃k, (7)

〈Tµν〉(2) = Gµν


n−1µ
n̄−n

4(2π)n−1

{
I2

6(n − 1)(n − 2)
+

(
ξ − 1

6

)
I1

}
, (8)

I1 =
∫ ∞

0
dx

x(n−3)/2

ω̃k

, I2 =
∫ ∞

0
dx

x(n+1)/2

ω̃3
k

d2ω̃2
k

dx2 , (9)
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where 
n−1 ≡ 2π(n−1)/2/�[(n−1)/2], x ≡ k2/C and ω̃k = ωk/
√

C. To get these results, we
performed several integrations by parts, and used the fact that in dimensional regularization
the integral of a total derivative vanishes. For the usual dispersion relation, the integral I2

vanishes and we recover the known second adiabatic order results [7].
Equations (7)–(9) show that 〈Tµν〉(0) = N0gµν and 〈Tµν〉(2) = N2Gµν, where N0 and

N2 are divergent factors in 3+1 dimensions. Hence, these contributions can be absorbed
into a renormalization of the cosmological and Newton constants: we can define 〈Tµν〉Ren =
〈Tµν〉 − 〈Tµν〉(0) − 〈Tµν〉(2) and write the SEE as

Gµν + �Rgµν = 8πGR〈Tµν〉Ren. (10)

Differing from the standard case ω2
k ∼ k2, all contributions of adiabatic orders higher than the

second are finite, which suggests that no terms quadratic in the curvature would be necessary
in the SEE.

4. A discontinuity in the limit MC → ∞?

Assuming that the usual dispersion relation is valid for all energies, the renormalization of the
stress tensor in 3+1 dimensions is achieved by subtracting the fourth adiabatic order [6, 7].
This procedure is equivalent to a redefinition of the bare constants in the effective Lagrangian
and is independent of the particular metric considered. It is necessary to renormalize not only
the cosmological and Newton constants, but also to include in the gravitational Lagrangian
the three quadratic terms α0R

2 + β0RµνR
µν + γ0RµνρσRµνρσ , and absorb the infinities into

the bare constants α0, β0 and γ0. The trace anomaly is a well-known consequence of this
renormalization scheme. However, if at some very high energy scale MC the dispersion
relation gets modified by a term of the form k2r

/
M

2(r−1)
C , r � 2, only the second adiabatic

order is divergent and, as described above, it would be enough to ‘dress’ the cosmological
and Newton constants. This ‘discontinuity’ in the order of the subtraction may produce
nonvanishing trans-Planckian contributions to the renormalized stress tensor, even in the limit
MC → ∞.

However, there is a subtle point in this argument. While by power counting the fourth
adiabatic order is finite, divergences may appear when 〈Tµν〉(4) is expressed in terms of
geometric tensors in n dimensions. Indeed, this is the case in lower dimensions, as we will
illustrate in what follows. Let us consider a conformally coupled (ξ = 0) massless field in
1+1 dimensions, with a dispersion relation of the form ω2 = k2 + 2bk4/C(η). For FRW
metrics in n dimensions Gµν is proportional to n − 2 (this tensor vanishes as n → 2, because
it is the variation of the would be Gauss–Bonnet topological invariant at n = 2). Therefore,
from equations (7)–(9) one readily sees that only the zeroth adiabatic order is divergent in the
limit n → 2. One would naively conclude that the subtraction of this order would be enough,
even for the usual dispersion relation, where it is known that it is necessary to subtract up to
the second adiabatic order [6]. The point is that while the geometric tensor Gµν vanishes in
exactly two dimensions, in equation (8) it is multiplied by a function that has a simple pole at
n = 2. Therefore, as the poles must be absorbed into the bare constants before taking the limit
n → 2, it is necessary to subtract up to the second adiabatic order, whatever the dispersion
relation. The renormalized trace of the stress tensor is then defined as

〈T 〉Ren = 〈T 〉modes − 〈T 〉(0) − 〈T 〉(2) (11)

where 〈T 〉modes is the unrenormalized trace computed using equation (6) and the explicit
expressions for the modes of the field. The case b = 0 is very well known: 〈T 〉modes vanishes
due to conformal invariance, 〈T 〉(0) also vanishes and one recovers the usual trace anomaly
〈T 〉Ren = −〈T 〉(2) = R/24π .
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Let us now assume that b 
= 0 and compute the renormalized trace in de Sitter space
C(η) = α2/η2. We have

〈T 〉modes − 〈T 〉(0) = − 1

πC

∫ ∞

0
dk

(
1 − k2

ω2
k

dω2
k

dk2

) (
ω2

k |χk|2 − ωk

2

)
. (12)

The modes of the field satisfy

|χk|2 = e−λπ/4

k

√
λ

2
|D−(1+iλ)/2[(i + 1)s]|2 ≡ 1

k
f (λ, s), (13)

where D is the parabolic function, s = kη/
√

λ and λ = α/
√

2b. After changing variables and
some algebra we get

〈T 〉modes − 〈T 〉(0) = R

2π

∫ ∞

0
ds s3

{
f (λ, s) −

√
λ

2
√

λ + s2

}
. (14)

A numerical evaluation of the integral gives, in the limit MC → ∞, 〈T 〉modes − 〈T 〉(0) =
−R/24π . As for the case of the usual dispersion relation b = 0, the trace of the stress tensor
has an anomaly. However, the numerical value does not coincide with the usual one (it differs
by a sign). Therefore, if we subtract only the zeroth adiabatic order, there is a discontinuity
in the renormalized stress tensor as MC → ∞. This discontinuity disappears if, as already
mentioned, we also subtract the second adiabatic order. Indeed, from equation (8) we find,
near n = 2,

〈T 〉(2) = − R

48π
((2 − n)I1 + I2)µ

2−n. (15)

As I1 is finite for nonvanishing b, the first term does not contribute to the trace in n = 2.
On the other hand, an explicit evaluation of I2 gives, in the limit b → 0, 〈T 〉(2) = −R/12π .
Therefore, combining equations (11), (14) and (15) we see that the usual trace anomaly is
recovered in the limit MC → ∞.

5. Conclusions

The adiabatic subtraction can be generalized to theories with modified dispersion relations:
for any dispersion relation, the zeroth and second adiabatic orders of the stress tensor are
proportional to gµν and Gµν , respectively. In 3+1 dimensions, the higher powers of k2 in the
dispersion relation make finite the fourth adiabatic order. Therefore, in order to get a finite
mean value of the stress tensor, it would be enough to subtract up to the second adiabatic order.
This would be possible for any value of the new physics scale MC . However, as we have
shown with a simple example in 1+1 dimensions, this renormalization prescription, which is
not equivalent to a redefinition of the bare constants in the effective Lagrangian of the theory,
would lead to a discontinuity in the stress tensor as MC → ∞ and to a wrong value of the
trace anomaly. It is likely that the finite fourth adiabatic order near 3+1 dimensions, when
written in terms of n-dimensional geometric tensors, will also have poles. This may happen
for a term proportional to the variation of the would be Gauss–Bonnet topological invariant
near n = 4. In this situation, a consistent renormalization would involve the subtraction of the
fourth adiabatic order. Work in this direction is in progress.
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